
 1

 In Proc. 19th Digital Avionics Systems Conference, 7-13 October 2000, Philadelphia, PA.

DEVELOPING HIGH ASSURANCE AVIONICS SYSTEMS
WITH THE SCR REQUIREMENTS METHOD*

R. Bharadwaj and C. Heitmeyer, Naval Research Laboratory, Wash., DC 20375

Introduction
In high assurance avionics systems, such as

systems for flight guidance, air traffic control, and
collision avoidance, compelling evidence is
required that the system behavior satisfies certain
critical properties. Some critical properties are
functional properties, properties of the services that
the system delivers. For example, when another
aircraft flies too close, a collision avoidance system
must advise the pilot to move the aircraft up or
down to avoid a collision. Besides functional
properties, four other classes of critical system
properties may be identified: security, safety, real-
time, and fault-tolerance. In most cases, an
avionics system must satisfy properties in more
than a single class. For example, a collision
avoidance system must satisfy not only functional
properties, but real-time constraints, fault-tolerance
properties, and safety properties.

Researchers have proposed numerous
approaches for specifying, constructing, and
certifying high assurance systems. These include
formal specification notations, formal models, and
rigorous verification and validation techniques.
But, two difficult problems remain. The first is the
need for technology to support the application of
these new methods to practical systems. Without
such technology, opportunities to transfer basic
research results to practice are severely limited.
Also needed is a unified framework for building
systems that satisfy multiple critical properties.
This need exists because not one but several
different approaches for developing high assurance
systems have evolved, each with a different
philosophy of system development and different
techniques for specification and assurance.

This paper describes a framework, based on
the SCR (Software Cost Reduction) requirements

*This work is supported by the Office of Naval Research.

method, that has recently been developed for
building high assurance systems. The SCR
framework includes a formal specification notation,
a state-based formal model, and assurance methods
useful for constructing systems that must provide
critical services in a secure, safe, timely, and fault-
tolerant manner. To illustrate the application of
SCR to avionics systems, this paper presents an
SCR requirements specification of a small avionics
system, introduced by Miller in [1], which powers
on a device of interest when the altitude of an
aircraft falls below a specified threshold. To
develop a specification for this system, we follow a
four-step process. This process provides a
systematic approach to developing and organizing a
requirements specification of a nontrivial system.

The SCR Requirements Method
The SCR (Software Cost Reduction)

requirements method is a formal method based on
tables for the specification and analysis of the
required behavior of safety-critical software
systems. Originally developed in 1978 by NRL
(Naval Research Laboratory) to document the flight
program requirements of the Navy’s A-7 aircraft,
SCR has also been applied by a number of
organizations in industry (e.g., Grummann, Ontario
Hydro, Bell Laboratories, and Lockheed) to a wide
range of practical systems, including avionics and
space systems. For example, in 1994, in the largest
application of SCR to date, Lockheed used SCR to
specify the requirements of the C-130J flight
control software, which contains more than 250,000
lines of Ada code.

To provide tool support for the SCR method,
our group at NRL has developed an integrated suite
of tools called the SCR* toolset [2]. The toolset
includes a consistency checker for checking the
specification for type errors, missing cases, and

green
Text Box
NRL Release Number 00-1221.1-1703

 2

inputs

M
NAT

M C

D_OUT

Output Device
Interf. Module

D_IN REQ
~

SOFTWARE

SYSTEM

output
vars.

sensors
actuators

......

Input Device
Interf. Module

Device-Indep.
Module

C
~

M
~

REQ

input
vars.

6\VWHP�5HT�
6SHFLILFDWLRQ

6\VWHP�'HVLJQ
6SHFLILFDWLRQ

6RIWZDUH�5HT�
6SHFLILFDWLRQ

Figure 1. Relationship between the SRS, the SDS, and the SoRS

unwanted nondeterminism [3]; a dependency graph
browser for displaying the dependencies among the
variables in the specification; and a simulator for
symbolically executing the system based on the
specification. Currently, more than 100 academic,
industrial, and government organizations in the US,
Canada, and several other countries are
experimenting with the SCR* toolset.

The utility of the SCR* toolset has been
evaluated in a number of pilot projects. In one,
NASA researchers used the toolset’s consistency
checker to detect several errors in the requirements
specification of software for the International Space
Station [4]. In a second project, engineers at
Rockwell used the tools to expose 28 errors, many
of them serious, in the requirements specification of
a flight guidance system [5]. Of the detected errors,
a third were uncovered by creating the specification
with the toolset, a third in running the consistency
checker, and the remaining third in executing the
specification with the simulator.

Process for Specifying Requirements
Figure 1 is the basis for a four-step process for

constructing a requirements specification. The first
step creates the System Requirements Specification
(SRS), which describes the required external
behavior of the system in terms of monitored and
controlled quantities in the system environment. We
refer to the behavior described by the SRS as the
“ideal” system behavior because it omits any
mention of I/O devices and hardware failures. The
remaining steps refine and extend the SRS. Step 2
creates the System Design Specification (SDS),
which identifies the system’s input and output
devices (e.g., sensors and actuators). Step 3 creates
the Software Requirements Specification (SoRS),
which refines the SRS by adding modules which
use values read from input devices to calculate
values of the monitored quantities and which use
the computed values of controlled quantities to
drive output devices. Step 4 extends the SRS by
adding behavior that reports hardware malfunctions,
e.g., sensor failures.

 3

In this process, we apply the information
hiding principle to the requirements specification so
that parts of the specification that are unlikely to
change together are assigned to different modules.
In applying information hiding to the specification,
all of the ways in which the requirements are likely
to change are identified, and the required system
behavior is decomposed into modules so that
exactly one module is associated with a single
change. The goal is to organize the requirements
specification so that each change requires a change
to only a single module. How this is achieved is
described below.

System Requirements Specification
To construct an SRS with

SCR, environmental quantities relevant to the
system are identified, and each quantity is
represented by a mathematical variable. These
quantities consist of both controlled quantities,
environmental quantities that the system controls,
and monitored quantities, environmental quantities
that can influence system behavior. In Figure 1, M
represents the monitored quantities and C represents
the controlled quantities.

The desired system behavior is documented in
the SRS by describing two relations, NAT and
REQ, on the monitored and controlled quantities;
these relations are part of the Parnas Four Variable
Model [6]. The relation NAT describes the
constraints imposed on the environmental quantities
by physical laws and the system environment. REQ
describes the relation between the monitored and
controlled quantities that the system must enforce to
produce the required behavior. In developing the
SRS, we initially specify REQ in terms of the ideal
behavior of the system; that is, we assume that the
system can obtain perfect values of the monitored
quantities and compute perfect values of the
controlled quantities. Later, for each controlled
variable, we specify timing constraints (and
possibly tolerances).

System Design Specification
The SDS identifies and documents the

characteristics of the resources that are available to
estimate values of the monitored quantities and to
set values of the controlled quantities. These values

are usually read from or written to hardware
devices, such as sensors and actuators. The values
in the system’s hardware/software interfaces are
denoted by variables. These variables are
partitioned into input variables, values read by
input devices, and output variables, values written
to output devices. The product of this step is a
description of the input and output devices and of
the relationship between the input and output
variables and the monitored and controlled
variables.

Software Requirements Specification
The SRS and the SDS are the foundation for

the SoRS, which describes how the input variables
are to be used to estimate values of the monitored
variables, and how estimates of the controlled
variables are to be used to control the output
devices using the output variables. Figure 1 shows
the relationship between the SRS, the SDS, and the
SoRS. It also shows the decomposition of the SoRS
into three modules: two device-dependent modules
called the input device interface module and the
output device interface module, and a single device-
independent module called the function driver
module. This organization was influenced by the
module structure of the A-7 flight software. In
Figure 1, relation D_IN specifies how estimates of
the monitored variables, represented by ˜ M , are
computed in terms of the input variables, and
relation D_OUT specifies how estimates of the
controlled variables, represented by ˜ C , are used to
compute the values of the output variables. The
outputs of the input device interface module, i.e.,
the estimated values of the monitored variables,
form the inputs to the function driver module. The
function driver module uses these estimates to
compute estimates of the controlled variables.

The required behavior of the function driver
module is already defined by the REQ relation,
specified as part of the SRS during Step 1 of our
process. What remains is to document the required
behavior of the device-dependent modules, i.e.,
D_IN and D_OUT. To satisfy the information
hiding principle, the input device interface module
only uses values of input variables to estimate
values of the monitored variables, and the output
device interface module only uses values of
controlled variables to compute the values of the

 4

output variables. The benefit of this approach is
that it makes the specification easy to change. For
example, to replace an input or output device with
a new device or to modify or add a system function,
usually only a small part of a single module will
change.

In Figure 1, the relation R ˜ E Q specifies the
relation between estimates of the monitored
quantities ˜ M and estimates of the controlled
quantities ˜ C . In most cases, R ˜ E Q extends REQ
because R ˜ E Q not only describes the ideal behavior
captured by REQ but also describes the externally
visible behavior that is not part of the ideal
behavior. Because REQ is based on perfect
knowledge of the monitored quantities and perfect
computations of the controlled quantities, REQ
does not describe how the system reports hardware
malfunctions. In practical systems, hardware
devices, such as sensors, will fail, and the system
will need to provide external notification of such
failures. R ˜ E Q extends the required behavior
described by REQ by describing how notification of
hardware malfunctions is presented to system users.

The SCR Notation
To specify the required system behavior in a

practical and efficient manner, the SCR method
uses mode classes. A mode class, whose values are
modes, is an auxiliary variable that helps keep the
specification concise. Each mode defines an
equivalence class of system states useful in
specifying the required system behavior. In SCR
specifications, we often use the following prefixes
in variable names: “m” to indicate monitored
variables, “mc” for mode classes, “c” for controlled
variables, “i” for input variables, and “o” for output
variables.

Conditions and events are important constructs
in SCR specifications. A condition is a predicate
defined on one or more state variables (a state
variable is a monitored or controlled variable or a
mode class). An event occurs when a state variable
changes value. A conditioned event has the form
“@T(c) WHEN d” and is defined by the expression
“NOT c AND c’ and d,” where the unprimed
conditions c and d are evaluated in the “old” state,
and the primed condition c’ is evaluated in the
“new” state. Informally, this expression denotes the

event “predicate c becomes true in the new state
when predicate d holds in the old state.” The
notation “@F(c)” denotes the event @T(NOT c).
The notation DUR(c) indicates the length of time
that condition c has been continuously true.

To specify the REQ, D_IN, and D_OUT
relations, SCR specifications use a set of tables.
Each table defines the value of a dependent variable
(a mode class or controlled variable) as a function.
A table may be either a condition table or an event
table. Typically, a condition table describes the
value of a controlled variable as a function of a
mode class and a condition, whereas an event table
describes the value of a controlled variable as a
function of a mode class and an event. A mode
transition table is a special case of an event table.
Although many SCR tables use modes to define the
value of a variable, some SCR tables omit modes.

Specifying the ASW in SCR
To illustrate the above process, we apply it to

the Altitude Switch (ASW) described in [1]. The
ASW turns on the power to a Device of Interest
(DOI) when the aircraft descends below a threshold
altitude of 2000 feet. The ASW accepts an inhibit
signal that prevents it from turning on power to the
DOI, and a reset signal that returns the system to its
initial state. It receives altitude information from an
analog altimeter and two digital altimeters. If the
DOI fails to turn on within two seconds, if all three
altimeters fail for more than two seconds, or if
system initialization fails, the ASW indicates a fault
by turning on a fault indicator light and by failing to
strobe a watchdog timer.

This section demonstrates how a requirements
specification for the ASW can be developed using
the four-step process described above. First, the
ideal behavior of the ASW is described by
specifying the monitored and controlled variables
and the relation REQ. The product of Step 1 is the
SRS. Specified in Step 2 are the input and output
variables associated with the ASW I/O devices and
the relationship between these variables and the
monitored and controlled variables. The third step
describes the SoRS by specifying the relations
D_IN and D_OUT, i.e., how estimates of the
monitored variables are computed from values of
the input variables and how the values of the
controlled variables are written to output devices.

 5

Finally, the SoRS and the SRS are extended to
support the reporting of hardware malfunctions.

ASW System Requirements Specification
To specify the ideal behavior of the ASW, the

SRS defines seven variables: five monitored
variables, one controlled variable, and one mode
class. Described below are four steps we follow to
specify the ideal behavior: 1) describe the
controlled variables; 2) describe the monitored
variables; 3) describe the mode classes, and 4)
describe the required relation REQ between the
monitored and controlled variables.

In the ASW, the single controlled quantity is
the signal that wakes up the DOI. This is
represented by the controlled variable cWakeupDOI
which has an initial value of false. Table 1 lists the
single ASW controlled variable, its type, initial
value, and a brief description.

Table 1. Controlled Variables of the ASW

Name Type Init. Value Description

cWakeupDOI boolean false True means power on DOI

Described next are the environmental
quantities that the ASW monitors to determine
when to turn the power to the DOI on. Table 2 lists
five monitored variables along with their types,
initial values, and brief descriptions. The
monitored variable mAltBelow represents the
aircraft position relative to the threshold altitude
and is true if the aircraft position is below the
threshold and false otherwise. (In this example, the
threshold altitude is 2000 feet.) The other four
monitored variables – mDOIstatus, mInitializing,
mInhibit, and mReset – indicate whether the DOI is
on or off, whether the system is being initialized,
whether turning the DOI power on has been
inhibited, and whether a system reset has been
initiated.

As noted above, each mode in a mode class
defines an equivalence class of system states.
Modes are useful in defining the required relation
REQ between the monitored and controlled
variables. In the ASW, the system is in one of three
modes: “init” if the system is initializing,
“awaitDOIon” if the system is waiting for the DOI
to power on, and “standby” otherwise.

Table 2. Monitored Variables of the ASW

Name Type Init. Value Description

mAltBelow boolean true below if alt. below threshold

mDOIStatus enum off on if DOI powered on; else off

mInitializing boolean true True iff system initializing

mInhibit boolean false True iff DOI power on inhibited

mReset boolean false True iff Reset button is pushed
Table 3 contains a mode transition table which

specifies new values for the mode class “mcStatus”
as a function of the five monitored variables listed
in Table 2. The table states that the system
transitions from “init” to “standby” when
mInitializing becomes false and back to “init” when
the user initiates Reset. It states further that the
system transitions from “standby” to “awaitDOIon”
if the aircraft altitude drops below the threshold
altitude when the DOI is powered off and powering
on the DOI is not inhibited. Finally, it states that
the system transitions from “awaitDOIon” to
“standby” when the DOI is powered on.

Table 3. Mode Transition Table for mcStatus

Old Mode Event New Mode

init @F(mInitializing) standby
standby @T(mReset) init
standby @T(mAltBelow) WHEN awaitDOIon

 NOT mInhibit AND mDOIStatus=off

awaitDOIon @T(mDOIStatus=on) standby

awaitDOIon @T(mReset) init

Mode Class mcStatus

After the environmental variables and the
mode class have been defined, the next step is to
specify the required relation REQ. To do so, we
define the value of the controlled variable
cWakeupDOI as a function of the mode class
mcStatus. As shown by Table 4, the value of
cWakeupDOI depends solely on the current mode.

Table 4. Condition Table for cWakeupDOI

Mode cWakeupDOI

init, standby false
awaitDOIon true

Mode Class mcStatus

ASW System Design Specification
This section describes the input and output

variables associated with the selected ASW input

 6

and output devices and the correspondence between
these variables and the monitored and controlled
variables specified above. To keep the paper
concise, these input and output variables are
described abstractly and details of the hardware
device interfaces are omitted (e.g., whether the
devices are interrupt-driven or polled, details of
their control and data registers, etc.). However,
these device details need to be recorded in the SDS
eventually because the software developers need
this information to design and write code for the
device drivers.

Table 5. ASW Input and Output Variables

Name Type Init. Val. Description

iAnaAltValue yAltVal below below if alt. below threshold

iDigAlt1Value yDigVal 0 a/c altitude measured in feet

iDigAlt2Value yDigVal 0 a/c altitude measured in feet

iAnaAltStat yAltStat valid Valid if altitude value reliable

iDigAlt1Stat yAltStat valid Valid if altitude value reliable

iDigAlt2Stat yAltStat valid Valid if altitude value reliable

iDOIStatus enum off on if DOI powered on; else off

iInhibit boolean false True iff DOI power on inhibited

iInitializing boolean true True iff system initializing

iReset boolean false True iff pilot has reset system

Time integer 0 Time in milliseconds

oDOIPower boolean false True iff DOI is to be powered on

Table 5 lists the 11 input variables and one
output variable associated with the input and output
devices of the ASW along with their types, initial
values, and brief descriptions. Three altimeters, an
analog altimeter and two digital altimeters, are used
to estimate whether the aircraft is below the
threshold altitude. The value provided by the
analog altimeter, represented as “iAnaAltValue,”
indicates whether the aircraft is below or above the
threshold. In contrast, the values provided by the
two digital altimeters, represented as
“iDigAlt1Value” and “iDigAlt2Value,” specify the
aircraft altitude in feet. The validity of the
information provided by the altimeters is
represented by the input variables “iAnaAltStat,”
“iDigAlt1Stat,” and “iDigAlt2Stat”. The integer
input variable “Time” specifies the system time in
milliseconds. The remaining input variables
correspond to the remaining monitored variables,
e.g., iDOIStatus corresponds to mDOIStatus,
iInhibit corresponds to mInhibit, etc. The output
variable oDOIPower is true if the device is to be
powered on and false otherwise.

ASW Software Requirements Specification
As described above, the SoRS is organized

into two device-dependent modules and a single
device-independent module. Because the relation
REQ in the SRS already defines the required
behavior of the device-independent module, what
remains is to specify the input and output device
interface modules, i.e., D_IN and D_OUT.

The relation D_IN specifies how the input
variables in Table 5 are used to compute estimates
of the monitored variables in Table 2. (In our
approach, estimates of the monitored and controlled
variables are denoted as mR˜ e set, mIn˜ h ibit , etc. To
improve readability, we have omitted the tildes.)
Estimating the values of four of the monitored
variables – mDOIStatus, mInhibit, mReset, and
mInitializing – from the corresponding input
variables – iDOIStatus, iInhibit, iReset, and
iInitializing – is straightforward. In each case, the
estimated value of the monitored variable is simply
the value of the corresponding input variable, i.e.,
mReset = iReset, mInhibit = iInhibit, etc. (These
simple functions are placeholders for more complex
functions for computing estimates of the monitored
variables. Such information, e.g., how the software
determines whether system initialization is
complete, i.e., how and when mInitializing will be
set to false, is unspecified in [1].)

Estimating the value of the monitored variable
mAltBelow relies on the first six input variables
listed in Table 5: the three values provided by the
altimeters and the three indicators of validity of the
altimeter information. If at least one of the
altimeters indicates that the altitude is below the
threshold and if that altimeter information is valid,
then the ASW considers the altitude below the
threshold, i.e., mAltBelow is true. Otherwise,
mAltBelow is false. Table 6 contains a condition
table that defines the value of mAltBelow as a
function of the six altimeter inputs. In Table 6, kAlt
represents the threshold altitude 2000 feet.

Relation D_OUT specifies how estimates of
the values of the controlled variables are used to
drive the output devices. In the ASW, the single
controlled variable cWakeupDOI provides this
estimate. The value of the output variable
oDOIPower is simply a copy of the value of
cWakeupDOI, i.e., oDOIPower = cWakeupDOI.

 7

Table 6. Condition Table for mAltBelow

Condition mAltBelow

(iAnaAltStat = valid AND true

iAnaAltValue = below) OR

(iDigAlt1Stat = valid AND
iDigAlt1Value <= kAlt) OR

(iDigAlt2Stat=valid AND
 iDigAlt2Value <= kAlt)
(iAnaAltStat = invalid OR false

iAnaAltValue = above) AND
(iDigAlt1Stat = invalid OR

iDigAlt1Value > kAlt) AND

(iDigAlt2Stat = invalid OR
 iDigAlt2Value > kAlt)

Reporting Hardware Malfunctions
This section adds behavior to the original SRS

and to the SoRS to capture the reporting of
hardware malfunctions. Three kinds of
malfunctions are reported: malfunctions of the
altimeters, malfunctions indicating initialization
failure, and malfunctions in powering up the DOI.
All three malfunctions are detected using two time-
outs: FaultDur, which lasts 2 sec (or 2000 ms) and
InitDur, which lasts 0.6 sec (or 600 ms). Adding
the new behavior requires the creation of a new
monitored variable, a new controlled variable, and a
new output variable, and extensions to the mode
transition table in Table 2 and the function defining
cWakeupDOI in Table 4.

Table 7. Condition Table for mAltimeterFail

Condition mAltimeterFail

iAnaAltStat = valid OR false
 iDigAlt1Stat = valid OR

 iDigAlt2Stat = valid

iAnaAltStat = invalid AND true

 iDigAlt1Stat = invalid AND

 iDigAlt2Stat = invalid

For each of the input variables, iAnaAltStat,
iDigAlt1Stat, and iDigAlt2Stat, the value “invalid”
indicates a malfunction in the corresponding
altimeter. We define a new monitored variable
“mAltimeterFail” to represent the malfunction of all
three altimeters. Table 7 contains a condition table
defining mAltimeterFail as a function of these three
input variables.

Table 8 extends the mode transition table in
Table 3 to capture the detection of hardware
malfunctions. To represent these malfunctions, a

new mode called “fault” is added to the set of
modes in the mode class mcStatus. Table 8 states
that a fault is detected if the system remains in the
initializing state for more than 0.6 sec, if the DOI
takes more than 2 sec to power up, or if all three
altimeters have failed for 2 sec. The system
recovers from malfunctions when the pilot presses
Reset. To mark the extensions to Table 2, we have
shaded the four transitions in Table 8 which involve
the mode “fault” and the added constraint for
system transfer from “standby” to “awaitDOIon”.

Table 8. Extended Mode Transition Table

Old Mode Event New Mode
init @F(mInitializing) standby

init @T(DUR(mcStatus=init) > InitDur) fault
standby @T(mReset) init
standby @T(mAlt_Below) WHEN awaitDOIon

 NOT mInhibit AND mDOIStatus=off

 AND NOT mAltimeterFail

standby @T(DUR(mAltimeterFail) > FaultDur) fault

awaitDOIon @T(mDOIStatus=on) standby

awaitDOIon @T(mReset) init
awaitDOIon @T(DUR(mcStatus = awaitDOIon) > FaultDur) fault

 OR @T(DUR(mAltimeterFail) > FaultDur)
fault @T(mReset) init

Mode Class mcStatus

The extension of the ASW to report hardware
malfunctions requires modifications to Table 4,
which defines the value of cWakeupDOI, and the
creation of two new variables, a new controlled
variable to turn on a fault indicator light and a new
output variable to strobe the watchdog timer. Table
9 is a trivial extension of Table 4 to cover the new
mode “fault”. Table 10 contains a function defining
the value of a new controlled variable called
cFaultIndicator which is on if the system is in the
mode “fault” and off otherwise.

Table 9. New Condition Table for cWakeupDOI

Mode of mcStatus cWakeupDOI

init, standby, fault false
awaitDOIon true

Table 10. Condition Table for cFaultIndicator

Mode of mcStatus cFaultIndicator

init, standby, awaitDOIon off
fault on

 8

Table 11 defines a function to strobe the
watchdog timer when no fault has been detected.
The first row states that oWatchDogTimer is set to
true when it has remained false for 0.1 sec and
cFaultIndicator is false. The second row describes
a similar transition setting the variable to false.
This ensures that the system strobes the watchdog
timer every 0.2 sec when no fault has been detected.

Table 11. Event Table for oWatchDogTimer

Event oWatchDogTimer’

@T(DUR(NOT oWatchDogTimer) >= 100) true

 WHEN NOT cFaultIndicator

@T(DUR(oWatchDogTimer) >= 100) false
 WHEN NOT cFaultIndicator

Applying the SCR Tools
We used the SCR* toolset to develop the SCR

specification of the required ASW behavior and to
analyze the specification for desired properties.
The analysis tools that we applied were the
consistency checker and the simulator. We
performed the analysis in two stages. First, we used
the tools to analyze the SRS, i.e., the ideal system
behavior. Once we had confidence in the quality of
this specification, we added the refinements and
extensions described above -- the input and output
variables and the extensions to the specification to
report hardware malfunctions.

Our analysis uncovered some minor errors,
which we corrected with only a small investment in
human effort and time. Further, running the
consistency checker and finding no problems, and
running a series of scenarios through the simulator
and finding that the simulated behavior matched our
expectations, increased our confidence in the
specification’s correctness. Moreover, our analysis
exposed an error in the specification in [1] and
raised important questions. For example, what
happens if an inhibit signal is received when the
ASW is in mode “awaitDOIon?” Should there be
more than a single fault indicator light, perhaps one
for each altimeter?

Summary
In our view, separation of the ideal system

behavior from the real system behavior (i.e., the
behavior that includes data associated with I/O

devices and hardware malfunctions) is very
valuable in requirements specification and analysis.
The specification of the ideal behavior of the ASW
is very simple: it involves only seven variables and
four tables and is presented on a single page. In our
view, understanding and specifying the essential
system behavior (captured by the SRS) should
precede the consideration of details such as the
characteristics of input and output devices and the
reporting of hardware malfunctions. Adding the
extra information to the SDS and the SoRS and
extending the system behavior is straightforward
once the essential behavior is understood.

Alternative specifications of the required ASW
behavior are presented by Miller in [1] and by
Thompson et al. in [7]. Miller does not specify the
ideal system behavior and hence we found his
specification difficult to understand and to analyze.
The specification in [7] also combines the ideal
system behavior with the externally visible behavior
which reports hardware malfunctions but, like our
approach, uses refinement and extension to produce
the complete specification. For another example in
which we applied our four-step process to a more
complex system specification, see [8].

Acknowledgement: We thank Beth Leonard for
her valuable comments on drafts of this paper.

References
[1] S. Miller. Modeling software requirements for embedded
systems. Draft report, 1999.

[2] C. Heitmeyer et al. SCR*: A toolset for specifying and
analyzing software requirements. In Proc. 10th Computer-
Aided Verification Conf., Vancouver, Canada, 1998.

[3] C. Heitmeyer et al. Automated consistency checking of
requirements specifications. ACM Trans. On Software Eng.
and Methodology (5)3: 231-261, 1996.

[4] S. Easterbrook et al. Formal methods for verification and
validation of partial specifications: A case study. Journal of
Systems and Software, 1997.

[5] S. Miller. Specifying the mode logic of a flight guidance
system. In Proc. 2nd ACM Workshop on Formal Methods in
Software Practice (FMSP ’98). 1998.

[6] D. Parnas et al. Functional documentation for computer
systems. Science of Computer Programming 25(1). 1995.

[7] J. Thompson et al. Specification-based prototyping for
embedded systems. In Proc. 7th ESEC/FSE, Sept. 1999.

[8] C. Heitmeyer and R. Bharadwaj. Applying the SCR
requirements method to the Light Control case study. Journal
of Universal Computer Science. Aug. 2000 (to appear).

